425 research outputs found

    A rhodanine agent active against non-replicating intracellular Mycobacterium avium subspecies paratuberculosis.

    Get PDF
    BACKGROUND: Antibiotic therapy targeting chronic mycobacterial disease is often ineffective due to problems with the emergence of drug resistance and non-replicating persistent intracellular antibiotic resistant phenotypes. Strategies which include agents able to enhance host cell killing mechanisms could represent an alternative to conventional methods with the potential for host clearance if active against dormant phenotypes. Investigations of agents with potential activity against non-replicating mycobacteria however are restricted due to a need for assays that can assess bacterial viability without having to culture. RESULTS: This study describes the development and use of a pre16S ribosomal gene RNA/DNA ratio viability assay which is independent of the need for culture, supported by a novel thin layer accelerated mycobacterial colony forming method for determining viability and culturability of MAP in intracellular environments. We describe the use of these tools to demonstrate intracellular killing activity of a novel rhodanine agent (D157070) against the intracellular pathogen Mycobacterium avium subspecies paratuberculosis (MAP) and show that the culturability of MAP decreases relative to its viability on intracellular entry suggesting the induction of a non-culturable phenotype. We further demonstrate that D157070, although having no direct activity against the culturability of extracellular MAP, can bind to cultured MAP cells and has significant influence on the MAP transcriptome, particularly with respect of delta(L )associated genes. D157070 is shown to be taken up by bovine and human cells and able to enhance host cell killing, as measured by significant decreases in both culturability and viability of intracellular MAP. CONCLUSIONS: This work suggests that pre16srRNA gene ratios represent a viable method for studying MAP viability. In addition, the rhodanine agent D157070 tested is non-toxic and enhances cell killing activity against both growing and latent MAP phenotypes

    Genomic variations associated with attenuation in Mycobacterium avium subsp paratuberculosis vaccine strains

    Get PDF
    BACKGROUND: Mycobacterium avium subspecies paratuberculosis (MAP) whole cell vaccines have been widely used tools in the control of Johne's disease in animals despite being unable to provide complete protection. Current vaccine strains derive from stocks created many decades ago; however their genotypes, underlying mechanisms and relative degree of their attenuation are largely unknown. RESULTS: Using mouse virulence studies we confirm that MAP vaccine strains 316 F, II and 2e have diverse but clearly attenuated survival and persistence characteristics compared with wild type strains. Using a pan genomic microarray we characterise the genomic variations in a panel of vaccine strains sourced from stocks spanning over 40 years of maintenance. We describe multiple genomic variations specific for individual vaccine stocks in both deletion (26-32 Kbp) and tandem duplicated (11-40 Kbp) large variable genomic islands and insertion sequence copy numbers. We show individual differences suitable for diagnostic differentiation between vaccine and wild type genotypes and provide evidence for functionality of some of the deleted MAP-specific genes and their possible relation to attenuation. CONCLUSIONS: This study shows how culture environments have influenced MAP genome diversity resulting in large tandem genomic duplications, deletions and transposable element activity. In combination with classical selective systematic subculture this has led to fixation of specific MAP genomic alterations in some vaccine strain lineages which link the resulting attenuated phenotypes with deficiencies in high reactive oxygen species handling

    Low frequency sound propagation in activated carbon

    Get PDF
    Activated carbon can adsorb and desorb gas molecules onto and off its surface. Research has examined whether this sorption affects low frequency sound waves, with pressures typical of audible sound, interacting with granular activated carbon. Impedance tube measurements were undertaken examining the resonant frequencies of Helmholtz resonators with different backing materials. It was found that the addition of activated carbon increased the compliance of the backing volume. The effect was observed up to the highest frequency measured (500 Hz), but was most significant at lower frequencies (at higher frequencies another phenomenon can explain the behavior). An apparatus was constructed to measure the effective porosity of the activated carbon as well as the number of moles adsorbed at sound pressures between 104 and 118 dB and low frequencies between 20 and 55 Hz. Whilst the results were consistent with adsorption affecting sound propagation, other phenomena cannot be ruled out. Measurements of sorption isotherms showed that additional energy losses can be caused by water vapor condensing onto and then evaporating from the surface of the material. However, the excess absorption measured for low frequency sound waves is primarily caused by decreases in surface reactance rather than changes in surface resistance

    A brief introduction to recent developments in population-based structural health monitoring

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.One of the main problems in data-based Structural Health Monitoring (SHM), is the scarcity of measured data corresponding to damage states in the structures of interest. One approach to solving this problem is to develop methods of transferring health inferences and information between structures in an identified population—Population-based SHM (PBSHM). In the case of homogenous populations (sets of nominally-identical structures, like in a wind farm), the idea of the form has been proposed which encodes information about the ideal or typical structure together with information about variations across the population. In the case of sets of disparate structures—heterogeneous populations—transfer learning appears to be a powerful tool for sharing inferences, and is also applicable in the homogenous case. In order to assess the likelihood of transference being meaningful, it has proved useful to develop an abstract representation framework for spaces of structures, so that similarities between structures can formally be assessed; this framework exploits tools from graph theory. The current paper discusses all of these very recent developments and provides illustrative examplesEngineering and Physical Sciences Research Council (EPSRC

    Immunity, safety and protection of an Adenovirus 5 prime--Modified Vaccinia virus Ankara boost subunit vaccine against Mycobacterium avium subspecies paratuberculosis infection in calves.

    Get PDF
    Vaccination is the most cost effective control measure for Johne's disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) but currently available whole cell killed formulations have limited efficacy and are incompatible with the diagnosis of bovine tuberculosis by tuberculin skin test. We have evaluated the utility of a viral delivery regimen of non-replicative human Adenovirus 5 and Modified Vaccinia virus Ankara recombinant for early entry MAP specific antigens (HAV) to show protection against challenge in a calf model and extensively screened for differential immunological markers associated with protection. We have shown that HAV vaccination was well tolerated, could be detected using a differentiation of infected and vaccinated animals (DIVA) test, showed no cross-reactivity with tuberculin and provided a degree of protection against challenge evidenced by a lack of faecal shedding in vaccinated animals that persisted throughout the 7 month infection period. Calves given HAV vaccination had significant priming and boosting of MAP derived antigen (PPD-J) specific CD4+, CD8+ IFN-γ producing T-cell populations and, upon challenge, developed early specific Th17 related immune responses, enhanced IFN-γ responses and retained a high MAP killing capacity in blood. During later phases post MAP challenge, PPD-J antigen specific IFN-γ and Th17 responses in HAV vaccinated animals corresponded with improvements in peripheral bacteraemia. By contrast a lack of IFN-γ, induction of FoxP3+ T cells and increased IL-1β and IL-10 secretion were indicative of progressive infection in Sham vaccinated animals. We conclude that HAV vaccination shows excellent promise as a new tool for improving control of MAP infection in cattle

    Assessment of the frequency of Mycobacterium bovis shedding in the faeces of naturally and experimentally TB infected cattle.

    Get PDF
    AIMS: Assess the prevalence of Mycobacterium bovis bacilli in faecal samples of tuberculous cattle, to better understand the risk of environmental dissemination of bovine tuberculosis (TB) through the spreading of manure or slurry. METHODS AND RESULTS: Faecal samples were collected from 72 naturally infected cattle with visible lesions of TB that had reacted to the tuberculin skin test and 12 cattle experimentally infected with M. bovis. These were examined by microbial culture and PCR to assess the presence of M. bovis bacilli. There were no positive cultures from any naturally infected test reactor animal. A single M. bovis colony was cultured from a faecal sample from one of the experimentally infected animals. A single PCR positive result was obtained from the faecal sample of one naturally infected test reactor. CONCLUSION: The prevalence of M. bovis in the faecal samples of TB-infected cattle was extremely low. SIGNIFICANCE AND IMPACT OF STUDY: The results suggest that the risk of spreading TB through the use of slurry or manure as an agricultural fertiliser is lower than suggested in some historical literature. The results could inform a reconsideration of current risk assessments and guidelines on the disposal of manure and slurry from TB-infected herds

    DNA-based detection of Mycobacterium avium subsp. paratuberculosis in domestic and municipal water from Porto (Portugal), an area of high IBD prevalence.

    Get PDF
    Mycobacterium avium subsp. paratuberculosis (MAP) may play a role in the pathology of human inflammatory bowel disease (IBD). Previously, we found a high frequency (98% in patients with active disease) of MAP DNA detection in the blood of Portuguese Crohn's Disease patients, suggesting this cohort has high exposure to MAP organisms. Water is an important route for MAP dissemination, in this study we therefore aimed to assess MAP contamination within water sources in Porto area (the residential area of our IBD study cohort). Water and biofilms were collected in a wide variety of locations within the Porto area, including taps connected to domestic water sources and from municipal water distribution systems. Baseline samples were collected in early autumn plus further domestic water samples in early winter, to assess the effect of winter rainfall. DNA was extracted from all 131 samples and IS900-based nested PCR used to assess the frequency of MAP presence. Our results show high MAP positivity in municipal water sources (20.7% of water samples and 41.4% of biofilm samples) and even higher amongst domestic sources (30.8% of water samples and 50% of biofilm samples). MAP positivity in biofilms correlated with positivity in water samples from the same sources. A significantly higher frequency of MAP-positivity was observed during winter rains as compared with samples collected in autumn prior to the winter rainfall period (61.9% versus 30.8%). We conclude that domestic and municipal water sources of Porto region have a high burden of MAP contamination and this prevalence increases with rainfall. We hypothesize that human exposure to MAP from local water supplies is commonplace and represents a major route for MAP transmission and challenge which, if positively linked to disease pathology, may contribute to the observed high prevalence of IBD in Porto district

    Improved Culture Medium (TiKa) for Mycobacterium avium Subspecies Paratuberculosis (MAP) Matches qPCR Sensitivity and Reveals Significant Proportions of Non-viable MAP in Lymphoid Tissue of Vaccinated MAP Challenged Animals.

    Get PDF
    The quantitative detection of viable pathogen load is an important tool in determining the degree of infection in animals and contamination of foodstuffs. Current conventional culture methods are limited in their ability to determine these levels in Mycobacterium avium subspecies paratuberculosis (MAP) due to slow growth, clumping and low recoverability issues. The principle goal of this study was to evaluate a novel culturing process (TiKa) with unique ability to stimulate MAP growth from low sample loads and dilutions. We demonstrate it was able to stimulate a mean 29-fold increase in recoverability and an improved sensitivity of up to three logs when compared with conventional culture. Using TiKa culture, MAP clumping was minimal and produced visible colonies in half the time required by standard culture methods. Parallel quantitative evaluation of the TiKa culture approach and qPCR on MAP loads in tissue and gut mucosal samples from a MAP vaccine-challenge study, showed good correlations between colony counts (cfu) and qPCR derived genome equivalents (Geq) over a large range of loads with a 30% greater sensitivity for TiKa culture approach at low loads (two logs). Furthermore, the relative fold changes in Geq and cfu from the TiKa culture approach suggests that non-mucosal tissue loads from MAP infected animals contained a reduced proportion of non-viable MAP (mean 19-fold) which was reduced significantly further (mean 190-fold) in vaccinated "reactor" calves. This study shows TiKa culture equates well with qPCR and provides important evidence that accuracy in estimating viable MAP load using DNA tests alone may vary significantly between samples of mucosal and lymphatic origin
    • …
    corecore